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ABSTRACT

Attention is focused on the dynamic buckling of imperfection—
sensitive models subjected to loading histories characterized by a
finite length of time of load application. Results are presented
which show that for all but highly imperfect structures the finite—
time buckling impulse can be considerably less than the zero—time
buckling impulse. The application of the results obtalned from the
models to actual imperfection—sensitive structures is discussed and
results are obtained which suggest what would seem to be conservative
buckling estimates for a long cylindrical shell loaded in axial

compression and having sufficiently strong end restraints.
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John W. Hutchinson and Bernard Budiansky - =
Harvard University, Cambridge, Massachusetts

INTRODUCTION

The bucklirg of imperfection-sensitive structures such as cylindrical
shells under axial compression and spherical shells subject to uniform
pressure has been studied intensively in recent years. While the static
buckling of such structures is fairly well understood, a clear understanding
of dynamic buckling is lacking. Existing analyses, as yet, hardly provide
any general guidelines for design against dynamic buckling. The present
paper continues the study initiated in Reference (1) with a view toward
presenting a complete pictﬁre of the dynamic buckling of some imperfection-
sensitive models. That initial study was concerned with buckling of the
models, and real structures as well, subjected to step loadings, 1.e., loads
suddenly applied and- subsequently held constant. Here consideration is
extended to loading histories characterized by a finite length of time of load
application. In addition to the presentation of results for the models, the
application of these results to actual imperfection-sensitive structures is
discussed and attention is focused on the cylindrical shell under axial

compression.

SIMPLE MODELS: STATIC BUCKLING

The imperfection-sensitive model shown in Figure 1 is a modified version

of that employed by Karman, Dunn and Tsien2 in their early study of cylinder

This work was supported in part by the Naticnal Aeronautics and Space
Adminigtration under Grant NsG-559, and by the Division of Engineering

_and Applied Physics, Harvard University.




buckling. The three-hinge, rigid-rod model is laterally constrained by a
non-linear softening spring, and a mass M is concentrated at the hinge
joining the two rods. The initial imperfection is identified with the

deviation of the unloaded structure from the straight configuration. Two

variations of the basic structure are investigated. The force of the

constraining spring of the quadratic model is given by
2
X X
PeiefX - of)]
| g ~ 4
where x 1s the lateral displacement. (Note that the total displacement is

then x + x , where the initial imperfection is x .) The spring force of

the cubic model is expressed as
F=uLfE - ()’
L L
The equation of dynamic equilibrium for the quadratic model is

£+ (1-MAgz - E 22 = Mg (1)
and for the cubic model is

£+ A-Mrdz - T 2d =g (2)
where z = x/x , E=ox/L , T = 8(x/L)2 , and (') = 1d, where

w dt
w = (k/M)u2 is the vibration frequency of the unloaded structure. The

static buckling load of the perfect column, the classical buckling load, is
xc = kL/2 .
The static buckling load of the imperfect structure is defined to be the

maximum value obtained by the applied load and is denoted by xs . The

static load-deflection curve for the quadratic model 1s shown in Figure 2(a).

The maximum value of A 1s obtained when %%'= 0 , and this condition used

in conjunction with Equation (1) (with Zz = 0 ) yields
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(A-Ag/A)% = 4 A/A, 3)
Only for E > 0 will there be a real value of AS that satisfies (3); for
E < 0 there is no static buckling load.
Figure 2(b) displays the static load~deflection curve for the cubic
model. A maximum value of A occurs only 1f B > 0 -- the condition for
the model to exhibit imperfection-sensitivity. The static buckling load of

the cubic model satisfies

-.1/2
3/2 303
(1-rg/ap>? = —-‘le-—— A/Ag %)

DYNAMIC BUCKLING OF MODELS

Two classes of loading histories will be considered in this paper.

Rectangular loading (Figure 3{a)) is characterized by A0 , the value of

applied load, and T , the length of time of load application. A particular

triangular loading (Figure 3(b)) is specified by A? , the initial, and thus

peak, value of the applied load and T . The dynamic response of either of
the two models is such that (for a fixed value of T ) for A" 1less than a
certain value, call it AD , the response 1s bounded, while it is unbounded

for A0 greater than A Thus, A,, 1is the natural definition of the

D° D
dynamic buckling load for the models. The unbounded behavior of the dynamic

response is related to the fact that the static equilibrium curve falls
monotonically once the buckling load has been attained. This curve does not
decrease to a minimum value of A and then rise, as 1is characteristic of an
actual structure.

The dynamic buckling loads for the case of step loading (the loading

displayed in Figure 3(a) with T = =) were obtained in Reference (1). For

the quadratic model the dynamic buckling load is related to the imperfection




parameter £ by an expression similar in form to that for the static

buckling load, namely
- 2,.16¢
(A-3p/A0)2 = 37 & Ap/A, (5)
The analogous expression for the cubic model is

-.1/2
3/2  3¢6
a2 - —-(—%—-- ApfAc (6)

\

An expression relating A, to A, (rather than £ ) 1s obtained by

combining Equations (3) and (5) so that

-;% ' ny?2 f— Q)

The dynamic buckling load of the cubic model is related to the static

buckling load in a similar mammer by

for the two models are displayed im Figure 4.

\ﬁ c""

Curves of AD/AS vs. Xs/AC
In this form, explicit dependence on the magnitude of the imperfection has
been eliminated but is reflected in AS/AC . Thus, the implications of the

model results for real structures is most easily seen.

For rectangular loadings of finite duration expressions analogous to (7)

and (8) (but considerably more complicated) relating AD ’ AS , AC and the
additional parameter T are derived in the Appendix (see Equations (A7) and
(A9)); these results also involve the vibration period of the unloaded
structure To = 2n/w , Similar analytic expressions could not be found for
triangular loading, and so it was necessary for this case to resort to
numerical integration of the differential equations (1) and (2) imn order to

discern the dynamic buckling loads A In fact, as a matter of convenience,

D .



most of the results for rectangular loading were also found by this
procedure, outlined in the Appendix.
A typical set of results is presented in Figure 5 to facilitate

comparison between the two models for buckling under rectangular loading.

For the case ASIAC = ,5 Figure 5 displays curves of AD/XS V8. T/To for
each model. For a given value of TITD the cubic model buckles at a lower
load than the quadratic. For large Tl'l'0 . ADIAS approaches the value
predicted by either Equaticn (7) or (8).

Figures 6(a) and (b) essentially summarize all the data for buckling
under rectangular loading. These figures display curves of AD/AS V8.
AS/AC for various values of '1‘/'1‘o . In this form the data is presented in
the same spirit as in Figure 4, i.e., the dynamic buckling load of the
structure 1s related to its static buckling load. The lowest curves in
Figures 6(a) and 6(b), corresponding to TIT0 = » . are those presented in
Figure 4,

Figures 7(a) and (b) are plotted in the same manner as Figure 5 but for
the case of triangular loading. The general features of these curves are
similar to those of Figure 6. For triangular as well as rectangular loading
AD/AS approaches the value given by either (7) or (8) for large TIT0 .

The finite-time buckling impulse is I = %-ADT for rectangular loading,
and I = %"ADT' for triangular loading. The zero-time buckling impulse for"
the quadratic model (given in Reference (1)) is

-1/2 '
_20) ) -2
I T AT, (A0 (9)

and for the cubic model 1s readily found to be

1/2
L 3(6) _ -3/2
T gr— AT (1-Ag/A0) (10)




Thus III0 depends only on T/To and ls/AC : and these results for each
model, for both rectangular and triangular loading, are given in Figure 8.
Over the range of T/T0 plotted the buckling impulse required for

triangular loading does not differ appreciably from that assoclated with
rectangular loading. It is noted that for all but highly imperfect structures
the finite~time buckling impulse can be considerably less than the zero-time

uckling impulse.

APPLICATION OF THE SIMPLE-MODEL RESULTS

Before attempting to discuss the application of the above results to
real structures we can make three observations of a qualitative nature which
follow from the simple-model results. Firstly, it is seen in Figure 6 that
for any given value of T/TD there is a large variation of AD/AS over the
possible range of Aslxc . Clearly, the more imperfect the structure the
smaller 1is ADIAS . The simple-model results strongly suggest that omne
should expect even more scatter in experimental results on dynamic buckling
than has been noted in conjunction with static buckling tests. The second
observation is related to the first but seems worthy of separate notice. For
nearly perfect structures, that is when lslkc is almost unity, the
indication is that there is a possibility of dynamic buckling loads several
times larger than the static buckling load even for loads which are applied
for times comparable with the natural vibration period of the unloaded
structure. The third comment, already made in regard to Figure 8, is that
the finite-time impulse necessary for buckling can be significantly less than
zero-time buckling impulse. The zero-time buckling impulse is only a safe
estimate for the finite~time impulse when the structure is highly imperfect.

Buckling under step loading of actual imperfection-semsitive structures



was investigated in Reference (1) by means of an extension of Koiter's
general theory of elastic stability3 to include inertial effects. Genersl
equilibrium equations were obtaimed such that the load parameier was related
to the deflection of the structure in the buckling mode (or modes) associated

th lowest buckling eigenvalue of the linear buckling analysis. For some
‘3pecial classes of structures the general equilibrium equations reduced to
either Equations (1) or (2) and hence one or the other of the curves in
Figure 4 was directly applicable. For certain other structures (including
the cylindrical shell under axial load) it appeared that the lower curve in
Figure 4 should provide a conservative estimate of dynamic buckling under
step loading.

When the length of time of load application is very short so that the
dynamic buckiing load is large compared to the classical buckling load (the
buckling load of the perfect structure) it is much more difficult to justify
the applicability of the model results. Two necessary conditions for their
validity are (1) that the inertia associated with the prebuckiing mode of
deformation of the perfect structure be negligible and (2) that the dynamic
buckling mode of the structure be not appreciably different from the static
buckling mode.

Application of the model results to an imperfection-sensitive structure
necesgitate: (1) assignment of a value to T0 z 2vfw and (2) specification
of the nature of the structure ~- quadratic or cubic. If the buckling mode
of the structure is a vibration mode as well, the first requirement can be
met if w 13 associated with the vibration frequency of this mode. A
structure which deforms in a number of buckling modes, such as the cylindrical

ghell under axial compression, presents difficulties in this respect. A



conservative choice may lead to identifying « with the largest of the
bucklicg mode frequencies.

For a given time of load application T/T0 , the lowest value of AD/ZS
for either model is that corresponding to the limiting case AS/AC = 0 (see
Figures 6 and 7). These limiting relations provide a conservative estimate
of AD/AS vs. T/T0 . In situations in which the possibility of small vaiues
of XS/XC cannot be discounted the use of these comservative relatioms
between ADIXS and I/Io may be appropriate. For convenience, the
variations of AD/AS with TOIT for rectangular loading for the case
ASIAC = 0 are plotted in Figure 9. For small TO/T the value of AD/AS
approaches that for step loading, i.e., 3/4 for the quadratic model and

-1/2

2 for the cubic model. If TOIT is large the behavior approaches the

zero-time impulse situation, and from Equations (9) and (10) the product
;g“%— approaches 2/1!(3)1/2 for the quadratic model and 3(6)1/2/8w for
the gubic model. As previously noted, the cubic model estimates are below
those for the quadratic model. Analytic expressions for these limiting cases

are given in the Appendix.

THE _LONG CYLINDRICAL SHELL UNDER AXIAL LOAD

In vhat follows, we have no intention of presenting anything but a crude
analysis of the axially loaded cylindrical shell, the imperfection-sensitivity
of which is associated with a multiplicity of buckling modes. The resuits,
nevertheless, tend to substantiate the general applicability of the results
for the models. On the basis of these results we are led to suggest what
would seem to be comservative buckling estimates for the cylindrical shell
under axial compression.

The classical buckling stress of a long cylindrical shell under axial
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compression having sufficiently strong end constraints is

- _w2yy~1/2 Eb
XC (3(1-v<)) R

where E 1is Young's modulus, v is Poisson's ratio, R 1s the shell radius
and h is the shell thickness. Following the treatment given in Reference
(1), we restrict consideration to only two of the many buckling modes
associated with this critical stress. In particular, we assume that the
buckling deformation of the shell takes place in 1ts axigymmetric buckling
mode and in the non-axisymmetric mode with axial buckle wave-length twice
that of the axisymmetric mode.

The following two equilibrium equations were obtained in Reference (1)

on the basis of the previously mentioned extension of Koiter's general theory:

1 - 3¢ 2 F
3 51 + (1 k/kc)il 37 52 Allc El (11)
5 3c <
<A/A - =
Ez + (1-r/ C)EZ 2 5152 XIJ\C Ez (12)

where ¢ = (3(1-\12))1/2 . Here, 52 is the deflection (relative to the shell

thickness) of the shell in its axisymmetric buckling mode; similarly, £2 is
the deflection in the non-axisymmetric mode. The initial imperfections in
the cylindrical geometry of the shell are taken to be in the form of the two
buckling modes and are of amplitude El and 22 relative to the shell
thickness. Finally, we have let () = ”%ES‘Qﬁzl where the vibration
frequencies associated with the two mode: (axial and circumferential inertias

neglected) are

2E41/2 2 1(E 2
N(l) = %(-5—') / and u)( ) = -i(g)l/

The buckling behavior of the cylinder under axially applied step loading
was studied in Reference (1) with the aid of the above two equilibrium

equations. Curves of KD/AS Vs, XS/A were obtained for a variety of

c
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ratios of El to Ez -- i.e., relative amount of axisymmetric to non-
axisymmetric imperfection. The smallest value of AD/AS for any given value
of As/lc was found to correspond to combinations of El and Ez such that
the axisymmetric imperfection was zero, El = 0 , A good approximation to
this case can be obtained analytically if the inertia term, %-El , in
Equation (11) 1s neglected. With this approximation, Equations (11) and (12)
can be combined to give
A/A

13)

z2 + (l-A/Ac)z2 C

R N
(l-lllc) 2

- 2 .
where z2 = EZIEZ and vy = %%— E: . Although this equation is not identical

to the equation for the cubic model, it is strikingly similar.
For the case of step loading the dynamic buckling stress is related to

the static buckling stress of the imperfect structure by
A=k 2 A
._L-( C D) = ?ﬂz _2 (14)
V2 g As

This formulas was given in Reference (1) and the results are between those
for the two models.

No attempt has been made to make a complete study with either Equations
(11) and (12) or Equation (13) for dynamic buckling of the cylinder under
rectangular loading. However, we do present two results, using Equation (13),
which tend to reinforce predictions based on the simple models. The zero-time

impulse necessary to buckle the cylinder is

1/2 A
1im . 3(6) _Usy-2
I =10 T ar ASTo(l Ac) (15)

where T0 = 2n/m(2) . For all values of AS/AC , this gives values of
IOIASTo for the cylinder between the predictions for the two models as

given by Equations (9) and (10).
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Secondly, and perhaps more important from the standpoint of design, the
relation between AD/AS and TOIT for rectangular loading for the limiting
case Aslxc = 0 can be shown to be identical to that for the cubic model.
Recall that this relation is given in the Appendix and is plotted in Figure 9.
Thus we seem to be led to the same conservative estimate for xD/xs vs.
T/T0 as was obtained for the cubic model. It is well known that values of

Asllc for cylindrical shells under axial compression are often as iittle

®
[

as .25; thue, design on the basis of the limiting case AS/AC = 0 may not

be unduly conservative. The value of T is
0

T0 = 2w/w(2) = ZwR[%lelz

but one is tempted to suggest an even more conservative criterion on the
basis of the argument that m(2) really has no special significance since
it emerged as a result of our restriction to only onz non-axisymmetric
buckling mode. Among all the static buckling modes of the shell, the

vibration period of the axisymmetric mode is the smallest. The choice of

T 27/w 2nR(55

in conjunction with the results in Figure 9 for the cubic model provides
what would seem to be a conservative dynamic buckling criterion.

We end this section on a note of caution. Equations (11) and (12) as
well as (13) are obtained under the assumption that the dynamic buckling
modes are the same as the static buckling modes. This would seem to be a
reasonable assumption as long as the applied stress ) 1s not significantly

greater than 2 However, for shorter lengths of time of load application

c L]
and consequently larger values of applied axial stress one must not overliook

the possibility of buckling in modes which are not characteristic of static
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buckling. This possibility has not been accounted for in the present analysis.

APPENDIX: ANALYSTS OF SIMPLE MODELS

Here we present an analytic procedure for obtaining the buckling load of
the quadratic model under rectangular loading. The results for the cubic
model can be found in a similar manner.

Analytic Procedure (Rectangular Loading)

The equation of dymamic egquilibrium for the guad

£+ (1-a/2p)z - E 22 = Mg (A1)

where £ = q %- and (') = i-g; . A first integral can be obtained for the

case of A suddenly applied for a length of time T . One finds
24+ QY22 -2F =2 2 for ot (a2)
and

z2 + 22 -

wiN

E 23 = A/AC(ZZ + z2) for t>T (A3)

for the initial conditions z =2 =0 at t = 0 and where z denotes the
value of z at t=T .

The dynamic buckling load XD for any given value of time of load
application T has been defined as the maximum value of A such that the
response remains bounded. The analysis is simplified if we adopt an
equivalent but slightly different point of view. Applying a load A we look
for the maximum value of T , call it T, , such that the response remains
bounded.

Figure Al depicts schematically, in the (z,z) phase plane, a series of
responses for seve;al values of T for one given value of A . When the

response is bounded, that is for any T < TD , 2z attains a maximum z
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when z = 0 and this value occurs for t > T . By Equation (A3)
2 - - -
2 - = 3=
22 - 3¢ 23 (22 + 22) (A%)

=

For all responses for which T < T. , Z <0 when z

z ; but for T = TD .
Z=0 when z =z
m

and by Equation (Al)

-~ 28
Z £ z 0
or

z =
m

ol i

(a5)

Now the value of 2z associated with the maximum bounded respomse can be

obtained from Equations (A4) and (AS). This is

A
7= (1+L1-HY2 (46)
3g2
The value of T associated with the maximum bounded response, TD , 18

found by integrating Equation (A2); this gives, finally, for the quadratic
model,

ZD A A
2 - -1/2
%— = %;-[ [2 iﬁ-z - (1- X%)zz +3¢ 23) 1/ dz (A7)
0
0

where T0 = 2r/w , and, consistent with the notation in the body of the

paper, T has been identified with TD and A with XD . Note that E

can be expressed in terms of As/xc (see Equation (3)).

The relation of AD/AS to T/T0 for the limiting case AS/AC = 0 may

be useful as a conservative buckling criterion. For small ASIAC

A
=a 1 C
6%._._.

4 AS

and

o

2s2s
C lD

zy ¥

wiom
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In the limit as XS/AC approaches zero (A7) becomes, with an appropriate

change of the variable of integration,

z_._(_z___zs'”zﬁ.a11_41§22+.1_6_l§3u-1/2d @8)
T %y (-3« 27(AD)‘) 3
0

Cubic Results (Rectangular Loading)

Analogous expressions for the cubic model, based on Equation (2), are
found in a manner similar to that described for the quadratic model. The
dynamic buckling load Ap is related to the imperfection parameter E (and

thus, by Equation (4), to As/xc Yand T by

D A A
T_1 o NP NP SR V)
= 3z f (2 e (1 *c)z +3 Tz dz (A9)
0 0
- 1 2eyi2
where here zy = (1 +'—:-I—] -~ 1 . The conservative buckling estimate
2z D

for the cubic model corresponding to the limiting case AS/AC = 0 and plotted

in Figure 9 1s

1
T Ter % 32 153 e + 15(16) (*n) z8) z
0

Numerical Procedure

Since expressions similar to those given for rectangular loading could

not be found for triangular loading, & straightforward numerical procedure
based on integration of the differential equation (Al) was derived. This
procedure was actually used for most of the rectangular loading calculations
as well as for triangular loading and spot checks on its accuracy were made
by means of the analytic results for rectangular loading. For prescribed

histories of A the values of z and z at the time t = T were calculated.
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Using these values it was possible to determine, again numerically, whether

the subsequent response was bounded or unbounded. Thus, repeated

calculations with different choices for A were necessary to determine the

critical history for a given value of T .
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